
When I install a Linux distro to my VAIO notebook, I found that there is an annoying bug with the lid
switch. It does not get updated whenever I suspend on lid close, it means cat
/proc/acpi/button/lid/LID/state will output state: close . When I close the lid again, it won't
suspend, instead, it will change the state to open. So in order for it to suspend again on lid close
after the first suspend, I have to close it, reopen the lid and close it again.

I have tried installing Linux Mint, Fedora, Fuduntu and Xubuntu, but it is not fixed in any of the
distros. So, I don't think it is distro problems. While researching this issues (which I spent two full
days), I found that Linux got an amazing feature that enable users to dynamically loading DSDT at
boot time, there is no need to update the BIOS. So here's the instuctions:

1. Install iasl using yum , apt-get or whatever package management you are using.
2. Extract DSDT:

$ sudo cat/sys/firmware/acpi/tables/DSDT > dsdt.aml

3. Disassemble dsdt.aml using the following command, this should create a new file
dsdt.dsl :

$ iasl -d dsdt.aml

4. Compile it using:

$ iasl -tc dsdt.dsl

5. Fix any compiler errors, warnings and remarks. On my machine, the output is:

dsdt.dsl 1352: And (CTRL, 0x1E)

Warning 1106 - ^ Result is not used, operator has no

effect

dsdt.dsl 1584: 0x00000000, // Length

Error 4122 - ^ Invalid combination of Length and

Min/Max fixed flags

dsdt.dsl 2443: Name (_T_0, 0x00)

Fixing Incorrect Lid State by
Hacking DSDT

a. The first one is on line 1352 can be fixed simply by changing And (CTRL, 0x1E) to And
(CTRL, 0x1E, CTRL) .
b. The second one is on line 1584, the length should be Range Maximum - Range Minimum +
1, on my machine, so fire up a hex calculator and start subtracting. On my machine, it's
0xE0000000 (0xDFFFFFFF - 0x00000000 + 0x00000001).
c. The third and fourth line is on line 2443 and 2521, because it uses a reserved name,
simply replacing all instances of _T_0 to T_0 will stop the complaints. In vim, it is as
simple as issuing :%s/_T_0/T_0/g in command mode.

Remark 5111 - Use of compiler reserved name ^ (_T_0)

dsdt.dsl 2521: Name (_T_0, 0x00)

Remark 5111 - Use of compiler reserved name ^ (_T_0)

6. Once everything is fixed (no errors, warning or remarks), add the following line to _WAK
method, simply search for _WAK in dsdt.dsl :

NOTE 1: You might need to change _SB.LID to match your path to LID method or on
some machine LID0 . Method name is preceded by an _ (underscore), so you can search
for _LID in dsdt.dsl . After you found it, you have to determine the scope, scroll up until
you found Scope keyword that your LID or LID0 method belongs to, inside the bracket is
the scope name. It may be in more than one scope, so, it might be _PCI0.SB.LID . If you
specify an incorrect path to LID method, you will receive the following error:

NOTE 2: What this function does is just to update the lid state once it is resumed from
sleep. According to the ACPICA documentation, _WAK method is called by
AcpiLeaveSleepState() function of ACPI. If the lid is open, the LIDS variable is 0x00 , or
0x01 otherwise. So these few lines translate to "if lid state is not open (closed), change lid
state to open and call LID method".

If (LNotEqual (0x00, LIDS))

{

Store (0x00, LIDS)

Notify (_SB.LID, 0x80)

}

dsdt.dsl 300: Notify (LID, 0x80)

Error 4068 - ^ Object is not accessible from this scope (LID_)

7. Compile it using iasl -tc dsdt.dsl .
8. If no errors, warnings or remarks, add the following lines to /etc/grub.d/01_acpi :

Uncomment to load custom ACPI table

GRUB_CUSTOM_ACPI="/boot/dsdt.aml"

DON'T MODIFY ANYTHING BELOW THIS LINE!

prefix=/usr

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

. /usr/share/grub/grub-mkconfig_lib

#. ${libdir}/grub/grub-mkconfig_lib

Load custom ACPI table

if [x${GRUB_CUSTOM_ACPI} != x] && [-f ${GRUB_CUSTOM_ACPI}] \

 && is_path_readable_by_grub ${GRUB_CUSTOM_ACPI}; then

 echo "Found custom ACPI table: ${GRUB_CUSTOM_ACPI}" >&2

 prepare_grub_to_access_device `${grub_probe} --target=device

${GRUB_CUSTOM_ACPI}` | sed -e "s/^/ /"

 cat << EOF

acpi (\$root)`make_system_path_relative_to_its_root

${GRUB_CUSTOM_ACPI}`

EOF

fi

9. Add executable bit to it:

$ sudo chmod +x /etc/grub.d/01_acpi

10. Copy the new dsdt.aml to /boot :

$ sudo cp dsdt.aml /boot

11. Regenerate grub.cfg :

$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

12. Reboot

Archwiki on DSDT
Redhat's Bug Report
Ubuntu's Bug Report 1
Ubuntu's Bug Report 2
Somebody's blog on fixing DSDT errors, remarks and warnings
ACPICA Documentation

References

https://wiki.archlinux.org/index.php/DSDT
https://bugzilla.redhat.com/show_bug.cgi?id=676031
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/34389
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/44825
http://sadevil.org/blog/2012/01/01/fixing-the-acpi-dsdt-of-an-acer-ferrari-one-200/
https://www.acpica.org/documentation

Revision #2
Created 5 April 2017 19:46:40 by Tingwai
Updated 2 July 2017 20:28:51 by Tingwai

